The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins

نویسندگان

  • Xuejun Zhong
  • Parie Garg
  • Carrie M. Stith
  • Stephanie A. Nick McElhinny
  • Grace E. Kissling
  • Peter M. J. Burgers
  • Thomas A. Kunkel
چکیده

DNA polymerase zeta (pol zeta) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol zeta alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol zeta. Pol zeta is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol zeta is substantially lower than that of homologous B family pols alpha, delta and epsilon. Pol zeta is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol zeta in vitro is consistent with Pol zeta-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol zeta contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase ζ

DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesion...

متن کامل

Processivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy.

Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders...

متن کامل

RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase δ

In fulfilling its biosynthetic roles in nuclear replication and in several types of repair, DNA polymerase delta (pol delta) is assisted by replication protein A (RPA), the single-stranded DNA-binding protein complex, and by the processivity clamp proliferating cell nuclear antigen (PCNA). Here we report the effects of these accessory proteins on the fidelity of DNA synthesis in vitro by yeast ...

متن کامل

The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta

A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols d and g. Yeast Pol d and yeast Pol g both bypass 8-oxoG and misincorpo...

متن کامل

The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases δ and η

A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols delta and eta. Yeast Pol delta and yeast Pol eta both bypass 8-oxoG an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006